

SOLUTIONS YOU NEED, TECHNOLOGY YOU TRUST

Corporate Info. of Nitto Nitto Mitto Group Company

Company name : **Nitto Denko Corporation** Date of foundation : **25th Oct 1918** Head Office : **Kita dist. Osaka pref. Japan.** Capital : **26.7B JPY** (as of Mar 2017) Consolidated sales : **768B JPY** (FY 16/ ended 31st Mar 2017 Number of employees : **29,617** (Consolidated base)

CEO/COO:	Hideo Takasaki				
Board	Toshiyuki Umehara(CTO)				
	Toru Takeuchi (CFO)				
	Yasushi Nakahira				
	Nobuhiro Todokoro				
	Yosuke Miki				
	Yoichiro Furuse				
	Takashi Hatchoji				
	Hiroshi Sato				

Mr. Takasaki President of Nitto Denko Corporation

Nitto Mydranautics

Confidential

History of Membrane Division

Nitto has over 40 years experience of membrane development since 1970's

1973	Start R&D for industrialization of separation membrane
1978	Commercialized prototype of capillary & spiral
1986	Shiga Plant started up as the world first RO/UF plant
1987	Acquire Hydranautics in California, USA
1991	Release Seawater desalination aromatic PA RO product
1995	Release ultra-low pressure RO product
1997	Release fouling-resistant RO product
2002	Spiral membrane assembly started in Shanghai
2008	SWC5 wins Nikkei Superior Products and Services Awards
2009	Start new plant operation in Shiga Plant

SACS MAX

Membranes: Key Drivers & VOC

Key Drivers

- Diminishing Water Resources
- Increasing Regulations
- Stringent water quality requirements

VOC

Consistent Quality & Quantity @ Lower Opex

- Higher Recovery
- Higher Membrane Life
- Lower Energy
 Consumption
- Low Fouling →
 - Extended Mean Time Between Cleanings

Our Product Offering Nitto Mitto Group Company

Reverse Osmosis (RO) Membrane Elements Nanofiltartion (NF) Membrane Elements Ultrafiltration (UF) Membrane Modules Membrane Bio Reactor (MBR) Modules Specialty Process Separation Products

Product Overview (RO/NF)

Application	SWC	CPA	LFC	ESPA	ESNA	PS* Mem.
Seawater Desalination						
Ultra Pure Water						
Municipal Wastewater Reclamation						
Industrial Wastewater Reclamation						
Potable Water						
Industrial Process Separation Applications						

*PS: Process Separation 6

Textile Industry

Membrane Technology Applications

Solutions You Need. Technologies You Trust.

Characteristics

- \checkmark Is complex and diversified
- Consumes large quantities of water
- ✓ End- Users are many
- Consumption is a small fraction of total usage

Hence recycle of effluent is feasible

✤ <u>TEXTILE PROCESSING</u>

Sizing & de-sizing Scouring Bleaching Mercerizing Dyeing Washing

Potential UF/NF Applications at Textile Mill

HYDRACoRe Series Product PERFORMANCE Description

Products -

- HYDRACoRe 10
- > HYDRACoRe 50
- HYDRACoRe 70

HYDRACoRe10 and 50

- HYDRACoRe10 is rated at approximately <u>3,000 Daltons</u>
 Rejection profile: 10-15% of NaCI , 4% of glucose, and 15% of sucrose
- HydraCoRe50 is rated at approximately <u>1,000 Daltons</u>
 Rejection profile : 50-60% of NaCl, 18% of glucose, and 41% of sucrose
 - ➢ pH Range of 2-11 Operating and 1-12 for Cleaning
 - Maximum continuous chlorine concentration: 10 PPM
 - ➤ Maximum chlorine concentration for cleaning: <100 ppm</p>

HYDRACoRe70 pHT

- HydraCoRe70pHT is a temperature and pH-tolerant version of the membrane and is rate at approximately <u>700 Daltons</u>.
 - ✓ Rejection profile: 70-80% NaCl, 39% of glucose, and 88% of sucrose

- ➢ Max. operating temperature: 158 F or 70 ℃
- ➤ Max chlorine concentration: 200 ppm
- ➢ Operating pH range: 1-13.5 pH
- ➢ Max. cleaning temperature of 90 ℃

Membrane Characterization (5)

Membrane Characterization (6)

Unique / Advanced NF Products

DYE TREATMENT AND WASTE WATER RE-USE IN TEXTILE INDUSTRY

Water Usage, %						
	Processing	70				
	Steam Generation	15				
	Cooling	10				
٥	Others	5				

Separation of Textile Chemicals

* <u>Recylce of Wastewater at Dying process</u>

Nitto MIRANAUTICS

Confidential

Recylce of Wastewater at Dying Process Water quality

Parameter	Wastewater	HYDRACoRe permeate
pН	11-12	5.8-6.2
TDS ppm	25000-100000	24500-99500
Hardness ppm	100-500	15-50
Colour	Dark	Colorless

Summary

In textile wastewater recycle plants, the dye bath waste and wash water are generally mixed and treated together.

The salinity to RO feed is high as the salt appears in the RO feed. The RO feed pressure is higher due to that. This also limits recovery and membranes are prone to fouling.

An attempt was made to segregate the dye bath and wash water streams and treat them separately. The dye bath waste is treated through NF membrane (HYDRACoRe50).

NaCl in the NF permeate is recovered and recycled back to the process.

The wash water stream is treated through a low fouling RO (LFC3) to produce low TDS product water. A plant designed with this concept has been in operation successfully for the last more than10 years.

Dye & OBA Concentration Flow Chart

Case Study- Colourtex

- □ Type of Dye: Reactive Dyes
- **Element: HYDRACoRe 50**
- □ Initial Concentration 5-10 %
- □ Final Concentration 25-30 %
- **Typical Duration : 10-20 hours**
- Dye used: Red, Blue, Orange, Black, Yellow

Spot Paper Results

OBA Concentration – Deepak Nitrate

- □ Element: HYDRACoRe 50 (1000 D)
- □ Initial Concentration of OBA solution- 16%
- □ Final Concentation 27-28%
- **Typical Duration : 8-10 hrs**
- Initial Salt concentration : 4% (chlorides & sulphate)
- □ Final Salt concentration : 0.4%

Feed

Permeate

Hydranautics UF & RO Membranes For High Fouling Waters

HYDRAcapMAX – Product offering

Element	Membrane area (m²)	Diameter (mm)	Height (cm)	ID fiber (mm)	OD fiber (mm)
HYDRAcapMAX40 40	9	100	113.3	0.6	1.2
HYDRAcapMAX40	52	250	120	0.6	1.2
HYDRAcapMAX60	78	250	120	0.6	1.2
HYDRAcapMAX80	105	250	170.8	0.6	1.2

HYDRAcap® MAX – Strength Advantage

Confidential

Cross section of the TIPS fiber

TIPS Fiber Technology:

Microporous, crystalline structure resulting from thermally induced phase separation (TIPS) provides:

Nitto Mitto

- Increased chemical resistance
- Increased mechanical strength

TIPS Fiber Characteristics:

Tensile strength: 7 – 9 MPa (3 - 4 times more than conventional PVDF fibers)

Burst pressure 0.8 MPa (3 times more than conventional PVDF fibers)

Key Benefits:

- Lower OPEX
- Reliability

HYDRAcap[®] MAX – Process Simplicity Advantage

HYDRAcap® MAX Advantage Summary

		Benefits				
Features	Advantages		Lower	Simplicit	Reliabilit	
		CAPEX	OPEX	У	y	
High membrane	Smaller footprint / Fewer skids	۷		٧		
	Reduced skid cost	V	: : :			
area	Fewer seals / connections				٧	
TIPS fiber	Reduced fiber breakage		v		۷	
technology	Increased tolerance to aggressive cleans		V		۷	
No backwash	Higher recovery		٧			
requirement	No pump nor ancillary equipment necessary	V		V		
Internal air diffuser	Even distribution of air within the module				۷	
	Even flux distribution along fiber length		۷		٧	
Dual lover potting	Delamination prevention		٧		✓	
Dual layer potting	Minimal fiber breakage		٧		٧	
PVDF membrane	Increased tensile and fatigue strength		: : :		۷	
material	Chlorine and other oxidant tolerant		V		٧	
OUT/IN technology	Ability to treat high turbidity feed water	V		۷		
	Higher surface area per module volume	V	V	· · ·		

HYDRAcube® Introduction

Simple

 One piece to convey all 3 fluids

Compact

- 30-50% footprint reduction compared to conventional HYDRAcap® MAX racks
- 25% higher output capacity than nearest competitor

Robust

 High strength TIPS PVDF fiber

HYDRAcube[®] IntroductioNitto More Company

Conventional Racks are:

Complicated

- Top Filtrate connection to Header
- Top Concentrate connection to Header
- Bottom Filtrate connection to Header
- Bottom Feed connection to Header
- Bottom Air Line connection to Header
- Top Filtrate Header
- Top Concentrate Header
- Bottom Filtrate Header
- Bottom Feed/Drain Header
- Bottom Air Header

Costly for small/medium systems

• 3-5X Higher per m2 membrane area Large Footprint

Conventional UF Rack Design

Issue of Composite Fouling in RO

- Colloidal
- Particulate
- Organic
- Biological
 - Polysaccharides
 - Proteins
 - Lipids

Keys to Reducing Fouling Rates Nitto Manager Strang Stranger Stran

Confidential

Spacer Design

- Minimize colloidal fouling
- Reduce pressure losses
- Increase system efficiency

Biostatic Properties

- · Prevent Adhesion of Bacteria
- Retard Growth of Bacteria

Membrane Robustness

- Increase chemical resistance
- Increase element life

Field Studies on Biofouling Feed water Nitto Group Company

Confidential

Samples of Membrane and Spacer from Side by Side Lead Elements After 6 Months of Operation on a Biofouling Surface Water

The LD Technology[™]: Features Enhanced Membrane Chemistry

The LD Technology[™]: Benefits Improved Membrane Durability

Confidential

Number of pH 12 NaOH Soaking

The LD Technology[™]: Features Patented Vented Seal Carrier

- Patented air release vent on the seal carrier
- Allows to release the air from the membrane during startup, reducing the risk of element burst during start up

Pressure Profile After Start Up

The LD Technology[™]: Core Products **Nitto Mitto Setto Seto S**

LFC® – True Hydrophilic Membrane Chemistry

Name	Flow		Salt rej	Membrane		
	gpd	M3/d	Nominal	Minimum	area ft2	
LFC3-LD-4040	2100	7.95	99.7	99.5	80	
LFC3-LD	11000	41.6	99.7	99.5	400	

Standard Test Condition : 1500 ppm NaCl, 15% recovery, 225 psi, 25 deg C

Surface Charge condition of LFC

Nitto MYDRANAL Nitto Group Con

Confidential

(pH dependence) **RO** membrane Surface Charge Condition of RO membrane (mV) 20 has: (+) charge membrane (mV) LFC2 0 **RO membrane has:** almost LFC3 neutral charge -20 CPA2 **RO** membrane -40 has: (-) charge 8 12 2 4 6 10

. .

SWC[®] – Purifying the Oceans of the World

Name	Flow		Salt rej	Membrane		
	gpd	M3/d	Nominal	Minimum	area ft2	
SWC4-LD	6500	24.6	99.8	99.7	400	
SWC5-LD- 4040	1750	6.62	99.7	99.5	80	
SWC5-LD	9000	34.1	99.8	99.7	400	

Standard Test Condition : 32000 ppm NaCl, 10% recovery, 800 psi, 25 deg C

Membrane Bio Reactor (MBR)

Hollow Fiber Membranes for Membrane Bioreactor Applications in Wastewater Treatment. Both Fibers use the same PVDF on a fabric support and can operate at the same flux and cleaning frequency

MF - HYDRAsub®

- > 0.4 micron pore size
- ≻ 2.8 mm OD
- ➤ 1 mm ID
- UF HYDRAsub MAX®
 - > 0.05 micron pore size
 - ≻ 1.65 mm OD
 - ≻ 1 mm ID

Nitto Mitto

Conventional Process and MBRANAUTICS

Confidential

Conventional Activated Sludge Process with Filteration

Why MBR ?

Nitto Ma

Confidentia

1. Elimination of Sedimentation Tanks : -> Less Foot Print Requirement

2. High MLSS, Shorter HRT: -> Compact Space -> Less Excess Sludge -> Treat High BOD Waste Water

3.Good Quality of Treated Water: -> Produce Recyclable Water -> Reduce Disinfection Cost

4. Solution to Sludge Bulking Problem

Nitto Mydranautics

Confidential

Nanofilteration

HYDRApro 400/ HYDRApro 500 NF & RO membranes made for special applications

HYDRACoRe Membranes for extreme conditions

IMSD2017 : RO design software Salient Features

- Can be downloaded from membranes.com
- User friendly
- Can feed multiple analysis.
- Custom ions
- Compare performance of various membranes.
- Hybrid & split partial designs.
- Power & Chemical dosing calculations.
- Costing calculations.

HYDRAcapMAX Simulator

- Web based design software. Access can be provided on request.
- Pre-feed water analysis of various sources.
- User friendly, minimum inputs required.
- Provide detailed time, chemical & power calculations.
- Provides pump & valve sizes.
- Generate sequence tables for purpose of control logic.

Design

Know the worst condition.

Follow guidelines from flux and other parameters.

Keep provision for

- Inter stage pressure gauge
- Reverse cleaning.
- Cleaning at warmer temperature
- Two cartridge for cleaning.

Product

Nitto Mydranautics

Confidential

Parameters for selection of RO membrane

- Membrane area
- Feed/brine spacer thickness.
- Salt rejection minimum/ nominal & flow.
- Special properties like surface charge.
- Parameters for selection of UF membrane.
 - Membrane area.
 - Ability to handle suspended solids.
 - Chemical tolerance.
 - Mechanical strength.
 - Waste water generated.
- Select supplier that can support you during design & troubleshooting.

People : Plant operation & Maintenance

- Maintain plant log sheets. Use tools like normalization software.
- Check SDI & tube profile periodically.
- Check feed water analysis periodically.
- Be vigilant about change in plant parameters.
- Clean membranes on time. Follow 10% rule.
- Keep cleaning chemicals & other spares in stock

Thank You from Nitto/Hydranautics

Innovations. Flexible Solutions. Real Relationships. Global Responsibility. Unwavering Integrity.

> Contact: Mr. A. Venkatesan - 9500190319 venkatesan.arunachalam@nitto.com